WL-LDC10D

8 Weeks Lead Time

High Speed Laser Diode/ SOA/ BOA Controller

  Datasheet

The LDC10D is a high speed laser diode driver especially designed to drive Semiconductor Optical Amplifiers (SOAs) and Booster Optical Amplifiers (BOAs) in the infrared range. It features an analog input which sets the laser current anywhere between 0 and 1 A at frequencies from DC to 15 MHz. This combination of high output drive and high slew rate makes the LDC10D well suited for switching as well as analog modulation applications. A digital TTL input allows digital switching between two arbitrary current settings with current rise and fall times of 20ns. Completely arbitrary modulation is enabled via an analog input.

The LDC10D features an adjustable current limit, reverse current protection and an integrated thermal overload protection. It provides an internal digital control loop as TEC controller with adjustable temperature and current limit. All parameters can be changed at the frontpanel.

An exchangeable mounting plate allows to quickly change laser diodes and to drive different butterfly packages. Mounting plates for type "A" (Covega/Thorlabs Quantum/Innolume/InPhenix pinout) and type "B" (Telecom pinout) are readily available. Should you require a different butterfly pinout, we can custom make it for you.

Main Applications

  • FDML laser: sweep amplitude shaping
  • Semiconductor Optical Amplifier (SOA)/ Booster Optical Amplifier (BOA)/ LED modulation and switching
  • Cited in over 20 publications

Features

  • Analog bandwidth DC to 15 MHz (Test condition: 1 App into Covega SOA 1132)
  • Digital TTL modulation (2 arbitrary currents) with 20ns rise/fall time
  • Up to 1 A output drive current
  • Adjustable output current limit 200 mA to 1 A
  • Analog current monitor output (1 V/A)
  • Laser diode reverse current protection
  • Integrated digital TEC controller (1.5 A max.)
  • Adjustable TEC regulator parameters (P, I, D)
  • Adjustable TEC current limit
  • USB interface (virtual COM port)

Downloads

Datasheet
Date: 2021/11/2
Size: 139 KB
WL-LDC10D Manual
Date: 2021/9/28
Size: 660 KB

Publications

WL-LDC10D, like many of our products, is regularly used to conduct scientific research all around the world. It has been mentioned in several renowned scientific publications:

Pulsed swept-source FDML-MOPA laser with kilowatt picosecond pulses around 1550 nm
Tonio F. Kutscher, Philipp Lamminger, Anton Gruber, Christina Leonhardt, Annika Hunold, Robert A. Huber, and Sebastian Karpf
Optics Letters Vol. 48, Issue 23, pp. 6096-6099 (2023)
Journal Article View Paper
13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography
Simon Lotz, Madita Göb, Wolfgang Draxinger, Anneli Dick, and Robert Huber
Conference on Lasers and Electro-Optics/Europe (CLEO/Europe 2023) and European Quantum Electronics Conference (EQEC 2023), Technical Digest Series (Optica Publishing Group, 2023)
Conference Paper View Paper
Defect mediated turbulence in a long laser
Amy Roche, Svetlana Slepneva, Uday Gowda, Anton Kovalev, Evgeny Viktorov, Alexander Pimenov, Andrei Vladimirov, Mathias Marconi, Massimo Giudici, Guillaume Huyet
Proc. SPIE 11671, Real-time Measurements, Rogue Phenomena, and Single-Shot Applications VI, 116710D (2021)
Conference Paper View Paper
Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates
Jan Philip Kolb, Wolfgang Draxinger, Julian Klee, Tom Pfeiffer, Matthias Eibl, Thomas Klein, Wolfgang Wieser, and Robert Huber
PLOS ONE, Vol. 14, Issue 3, e0213144 (2019)
Journal Article View Paper
High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates
Jan Philip Kolb, Tom Pfeiffer, Matthias Eibl, Hubertus Hakert, and Robert Huber
Biomedical Optics Express Vol. 9, Issue 1, pp. 120-130 (2018)
Journal Article View Paper
Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification
Matthias Eibl, Sebastian Karpf, Hubertus Hakert, Torben Blömker, Jan Philip Kolb, Christian Jirauschek, and Robert Huber
Optics Letters Vol. 42, Issue 21, pp. 4406-4409 (2017)
Journal ArticleView Paper
Megahertz FDML Laser with up to 143nm Sweep Range for Ultrahigh Resolution OCT at 1050nm
Jan Philip Kolb, Thomas Klein, Matthias Eibl, Tom Pfeiffer, Wolfgang Wieser, and Robert Huber
Proc. SPIE 9636, Biomedical Optics and 3D Imaging, 96360U (2016)
Conference PaperView Paper
High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s
Wolfgang Wieser, Wolfgang Draxinger, Thomas Klein, Sebastian Karpf, Tom Pfeiffer, and Robert Huber
Biomedical Optics Express Vol. 5, Issue 9, pp. 2963-2977 (2014)
Journal ArticleView Paper
Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers
Christoph M. Eigenwillig, Wolfgang Wieser, Sebastian Todor, Benjamin R. Biedermann, Thomas Klein, Christian Jirauschek, and Robert Huber
Nature Communications, Vol. 4, 1848 (2013)
Journal ArticleView Paper
Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser
Teresa Torzicky, Sebastian Marschall, Michael Pircher, Bernhard Baumann, Marco Bonesi, Stefan Zotter, Erich Götzinger, Wolfgang Trasischker, Thomas Klein, Wolfgang Wieser, Benjamin Biedermann, Robert Huber, Peter Andersen, Christoph K. Hitzenberger
Journal of Biomedical Optics, Vol. 18, Issue 2, 026008 (2013)
Journal ArticleView Paper
Multi-MHz retinal OCT
Thomas Klein, Wolfgang Wieser, Lukas Reznicek, Aljoscha Neubauer, Anselm Kampik, and Robert Huber
Biomedical Optics Express Vol. 4, Issue 10, pp. 1890-1908 (2013)
Journal ArticleView Paper
Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools
Wolfgang Wieser, Gesa Palte, Christoph M. Eigenwillig, Benjamin R. Biedermann, Tom Pfeiffer, and Robert Huber
Optics Express Vol. 20, Issue 9, pp. 9819-9832 (2012)
Journal ArticleView Paper
Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm
Sebastian Marschall, Thomas Klein, Wolfgang Wieser, Teresa Torzicky, Michael Pircher, Benjamin R. Biedermann, Christian Pedersen, Christoph K. Hitzenberger, Robert Huber, Peter E. Andersen
Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, 82130R (17 February 2012)
Conference PaperView Paper
High-speed polarization-sensitive OCT at 1060 nm using a Fourier domain mode-locked swept source
Sebastian Marschall, Teresa Torzicky, Thomas Klein, Wolfgang Wieser, Michael Pircher, Erich Götzinger, Stefan Zotter, Marco Bonesi, Benjamin Biedermann, Christian Pedersen, Robert Huber, Christoph Hitzenberger, Peter Andersen
Proc. SPIE 8427, Biophotonics: Photonic Solutions for Better Health Care III, 84271D (2012)
Conference PaperView Paper
Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser
Thomas Klein, Wolfgang Wieser, Christoph M. Eigenwillig, Benjamin R. Biedermann, and Robert Huber
Optics Express Vol. 19, Issue 4, pp. 3044-3062 (2011)
Journal ArticleView Paper
Ultra-rapid dispersion measurement in optical fibers
Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig, and Robert Huber
Optics Express Vol. 17, Issue 25, pp. 22871-22878 (2009)
Journal ArticleView Paper
Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range
Sebastian Marschall
Ph. D. thesis at the Technical University of Denmark (2012)
DissertationView Paper
WL-LDC10D Laser Diode Drivers monitor output

High-Speed, Low-Overshoot Current Modulation

Current monitor output of the LDC10D driving a Covega SOA-1132 (1310 nm).
Shows a 1μs TTL pulse from 0 mA → 1000 mA at a 1 MHz repetition rate for a buffered FDML laser.
The LDC10D has been optimized to minimize overshoot and ringing, ensuring clean, precise pulses.
Measurement scale: Horizontal 200 ns/div | Vertical 200 mA/div

WL-LDC10D Laser Diode Drivers monitor output

Fast Rise and Fall Times

Current monitor output of the LDC10D driving a Covega SOA-1132 (1310 nm) showing rise and fall times for a 800 mA current step.
Measurement scale: Horizontal 50 ns/div | Vertical 200 mA/div