FlexDDS (Rev. 2c_ 2, Nov 2011)
Flexible Multi-Channel Phase-Coherent RF Source

Features

e Multi-channel operation with precisely known
and adjustable phase relationship between
channels

Real-time control of all signal parameters
Phase-continuous frequency tuning

Computer interface (e.g. USB 2.0 link, RS-232)
Optional per-slot processor (see PDCPU below)

Components

e FlexDDS-Rack: 19" rack which integrates the
computer interface and power supplies. The
rack can hold up to 8 independent FlexDDS
RF generator slots and 1 frontpanel controller
slot (FlexDDS-FPCtl).

R DR E G G
Q) 46 o O . OFelo e

e FlexDDS: RF generator slot module

e FlexDDS-FPCtl: Slot module for reference
clock and trigger. Full rack

General Description

FlexDDS is a multi-channel phase-coherent RF source. The design deliberately targets the needs of
experimental physicists who want to control all signal parameters in real-time from a computer. Initially, a
series of actions (like changes in amplitude or frequency, start of frequency sweeps,...) is compiled into
commands which are then transferred to the FlexDDS-Rack via a USB link. Each time a (real-time
asynchronious) trigger input is activated, FlexDDS-Rack executes one or several commands and waits for the
next trigger event. There is no limit on the number of successive commands as they are loaded continuously
from the host computer.

One outstanding feature of FlexDDS is its defined and known phase relationship between channels. For
example, two channels can easily be set up to produce an RF output at the same frequency and with equal
phase. Slightly detuning the frequency of one channel will then linearly increase the phase difference between
the two channels.

Basic Operation

The DDS rack reads commands sent via the USB/RS232. The binary format for both interfaces is the same
and the document will refer only to USB. The commands are sent as a stream of 2-byte (16 bit) values,
transferred as LSB first (!). See the next chapter for a description of the data transfer to the DDS. See also
the example near the end of the document.

After reset, the DDS starts reading data from the USB. If there is no data available, it waits for the host
computer to supply data (yellow LED on). Since revision 2c_2, FlexDDS has an internal FIFO buffer for up
to 8192 words of data (either USB or RS$232). The buffer (FIFO) is completely transparent to the user.

2 FlexDDS Operator's Manual — Rev. r2c_2

The host computer will now typically configure the slots (write frequency tuning words, ramp registers etc.)
Once the host has configured the slots, it can set the continuation bit to zero while specifying which slots
should receive the next trigger. It is important to understand that the DDS registers (such as the frequency
tuning word) are only stored in the AD9910 DDS chip but are not yet active. To activate the new values, a
trigger signal is needed.

As soon as a 2-byte word with continuation bit 0 is read, the rack waits for a trigger to arrive. (Yellow LED
off.) The trigger is routed to selected slots activating the previously written values. The trigger is typically
the BNC trigger input of the rack (tiny leftmost control slot: top BNC input) and triggers on the rising edge
(falling edge can be configured). Alternatively, the red key on the leftmost control slot can be pressed to
manually generate a trigger. The green LED on the control slot flashes quickly once the trigger is delivered.
At the same time, the red trigger LEDs on the individual slots which get triggered with this particular trigger
pulse also flash quickly.

Directly after the trigger, the DDS rack resumes reading data from the USB and/or the internal FIFO buffer.
Individual slots can also be triggered via the red trigger pushbutton on each individual slot. As alternative to
the trigger pushbutton, the slot can be configured to accept an individual trigger via one of the BNC inputs.
The use of individual triggers is discouraged unless necessary. By default, indivudially triggering one slot as
outlined in the last sentences does not make the rack continue reading from the USB port. This can be
changed by configuring the backplane trigger bus.

A powerful feature on a per-slot basis is the profile (Gray) counter: The 8 single tone profiles (each
consisting of frequency, phase and amplitude) can be loaded into the DDS slot. Using BNC inputs on the
frontpanel slot, different profiles can be activated on a counter-like basis: 2 BNC inputs can be used: One to
count the profile conter up/down and one to select the counting direction (optional). This way, frequency or
phase can be changed very quickly — much faster than the 500kHz update rate of the slot writes.

The ramp generator built into the AD9910 can be used to perform frequency, phase and amplitude ramps in
up/down direction and optionally turn back once reaching the limit. The FlexDDS slots can be configured so
that BNC inputs on the slot can be used to hold the ramp or change the direction of the ramp in real time.
More powerful actions can be carried out via the RAM modulation feature of the AD9910. For a full
documentation, please consult the AD9910 datasheet from Analog Devices.

Synchronization

The DDS has a 10MHz external clock input. This input can be used as reference clock for all DDS channels.
Best signal is a 1-2V square wave although smaller sine waves work as well.

The trigger is internally synchronized to the 250MHz DDS sync clock. A synchronized copy of the trigger
signal is routed back via the SMA output on the rack control slot (the tiny leftmost slot) with programmable
polarity and 3.3V logic level. The first edge of this trigger output is synchronized to the DDS.

Note that there is a latency between the trigger and the update. It is recommended to switch on the
"matched latency” bit in the CFR2 register of the AD9910 (set by default in FlexDDS) so that changes in
amplitude, phase and frequency appear on the output at the same time.

Jitter-free triggering can be achieved by ensuring that the trigger signal is coherent with the 10MHz
reference clock and ensuring that the rising trigger edge has an appropriate delay with respect to the next
rising reference clock edge. This delay can be adjusted by inserting/removing a couple of centimeters cable in
one of the cables (trigger or refclock).

For synchronization of other devices, a sync trigger output is provided by FlexDDS (SMA output on the tiny
control slot). For each trigger, a short pulse is delivered at this output. The first edge of this pulse is
synchronized to the internal DDS sync clock (250MHz).

Data Transfer to the DDS

(© 20092011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 3

Data is sent as a 16bit wide stream via the USB FIFO interface. The FPGA respects USB handshake, so it
waits for new data to arrive from the host if the data stream stalls. (The RS-232 interface, if used, must be
configured for RTS/CTS hardware handshaking for the same reason.)

The 16 bits have the following meaning:

15 87 0
C...... L DDDDDDD

C — (bit 15) continuation bit: data is read as long as this is 1. If 0, read is stopped until a trigger is
received.

L — (bit 8) local bit:
1: data is processed by the FPGA in the rack
0: data is sent to the DDS slots

D — (bits 7..0) 8 data bits

Depending on the “local” bit (8), the bits denoted with ‘." have different meaning.

Local case: L=1 (bit 8 is 1)

15 87 0
C....AA1 DDDDDDDD

A — (bit 10..9) local register address
00: (CMD) execute a command
01: (CS_DATA) select which slots receive the following data
10: (CS_TRIG) select which slots receive the following trigger signals
11: (ICFG_BUS) internal FPGA /rack configuration bus

CMD register: Writing to this register executes a command:
00000001: Send a (synthetic) trigger pulse.
00010010: Store the value in the ICFG_BUS register into the ICFGO register (most important rack
control register).
00100010: Store the value in the ICFG_BUS register into the ICFG1 register (do not change this
register; internal use).
00000011: Make rack read from USB. DO NOT USE. (For internal use only.)

CS_DATA, CS_TRIG: Slot selection bitmask registers.

If a bit is set (1), the corresponding slot receives the next non-local write (CS_DATA register) or the
next trigger event (CS_TRIG register).

bit 0: leftmost (master) slot (next to the control slot)

bit 7: rightmost slave slot

The ICFG registers are the most important rack config registers. Normally, there is no need to change the bits
in there. In order to change the ICFGx register, first execute a write to the ICFG_BUS register (see above),
then execute the “write ICFGx register” command (e.g. for ICFGO, write “00010010" into CMD register).

ICFGO register bits:

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

4 FlexDDS Operator's Manual — Rev. r2c_2

bit 0 unused

bit 1 unused

bit 2 Force the use of the local 10 MHz clock even if an external 10 MHz reference clock is supplied to the
rack,

bit 3 Enable trigger from control slot (BNC and key) (Normally 1)

bit 4 Enable backplane trigger source (from DDS slots). (Normally 0)

bit 5 Enable LVDS 10 with frontpanel slot (normally 0, using normal single-ended 10).

bit 6 Invert rack trigger input. (Normally 0, i.e. rising edge triggered.)

bit 7 Invert the synchronized trigger output on the frontpanel (SMA out). If set, falling edge, otherwise
rising edge (default).

Note: ICFGO has reasonable default after reset (clocks enabled); do not change it unless you know what you
are doing.

ICFG1 register bits:

bit 0 internal use

bit 1 If set, lock out USB from access to FIFO; RS232 not affected.

bit 2 Disable the differential master refclock from the rack to the DDS slots.
bit 3 Deactivate 10 MHz crystal in rack.

bit 4 If set to 0, reset the USB FIFO chip.

bit 5 If set, clear the FIFO buffer in the rack.

bit 6 internal use

bit 7 unused

Note: ICFG1 has reasonable default after reset and is not meant to be changed by the host computer.

Remote case: L=0 (bit 8 is 0)

15 87 0
C....RRO DDDDDDDD

R — (bit 10..9) remote destination bits
00: (DDS) write DDS registers (AD9910) (dds_sel=0, trig=0)
01: (FPGA_DATA) write slot FPGA register content (dds_sel=1, trig=0)
10: currently unused / reserved
11: (FPGA_ADR) set slot FPGA register address (dds_sel=1, trig=1)

In order to write DDS registers, set RR=00 and stream the DDS data in the DATA section (D) using several
writes to transfer DDS register address followed by DDS register content. Example:

1....000 00000000 <- select CFR1 register in the AD9910 (address 0)
1....000 00000000 <- first byte (MSB) to write into the CFR1

1....000 01000000 <- second byte (bit 22 enables the inverse sinc filter)
1....000 00000000 <- third byte

1....000 00000000 <- fourth byte (LSB completing the 32bit register write)
1....000 00001001 <- select ASF register in the AD9910 (address 9)
1....000 00011000 <- first byte (MSB) to write into the ASF

1....000 00111000 <- second byte (ampl. ramp rate set to 6200)

1....000 11111111 <- third byte (ampl. scale factor to be set to 16383)
1....000 11111100 <- fourth byte (LSB completing the 32bit register write)

In this example, dots “." denote unused bits which should be written as 0.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 5

These register write commands get routed to those slots which were selected by the currently active content
of CS_DATA (0x83 0x..).

For DDS register addresses and register content in the AD9910 DDS chip please refer to the AD9910
datasheet available at Analog Devices (www.analog.com). Note: Do not change comminucation-related
parameters in the DDS (like MSB vs. LSB first format or the SDIO pin direction). Do not change the
AD9910 PLL and/or multi-channel synchronization settings unless you know precisely what you are doing.
These registers are set up by the internal controller after a reset.

Upon startup, the rack controller sets up reasonable defaults. The PLL settings and the multi-chip
synchronization should not be changed unless necessary. The single tone profile 0 (STPO) is set up with

0 MHz sine, phase offset 0, full amplitude (effectively produces no output because the frequency is 0).

The slot FPGA itself has a number of configuration registers as well. To write these registers, use RR=11 and
RR=01: First, set the register address you wish to write to using RR=11, then perform a register write using
RR=01. See further down for a slot FPGA register description.

FlexDDS slot FPGA internal register map

This section documents registers in the FPGA of each individual FlexDDS slot. These registers may not be
confused with the registers found in the AD9910 DDS chip.

0OSK_CTLA, 0SK_CTLB: control the OSK pin of the AD9910 DDS
DRCTL_CTLA, DRCTL_CTLB: control the DRCTL pin of the AD9910 DDS
DRHOLD_CTLA, DRHOLD_CTLB: control the DRHOLD pin of the AD9910 DDS
BPTRIG_CTLA] control the SLOT-to-backplane trigger

PROFILE_CTLA,PROFILE_CTLB: control the PROFILEO,1,2 pins of the AD9910 DDS

Register Name Address Bit7 Bit6 Bitb Bit4 Bit3 Bit2 Bitl BitO

reserved 0x00
BPTRIG_CTLA 0x01 ffset ffclr omuxO fmod0 iinv isel2 isell iselO
reserved 0x02
reserved 0x03
OSK_CTLA 0x04 omuxl omux0 fmodl fmodO iinv isel2 isell 1iselO
OSK_CTLB 0x05 0 0 0 0 0 0 ffset ffclr
reserved 0x06
reserved 0x07
DRCTL_CTLA 0x08 omuxl omux0 fmodl fmodO iinv isel2 isell 1iselO
DRCTL_CTLB 0x09 0 0 0 0 0 0 ffset ffclr
reserved 0x0a
reserved 0x0b
DRHOLD_CTLA 0x0c omuxl omux0 fmodl fmod0 iinv isel2 isell 1iselO
DRHOLD_CTLB 0x0d 0 0 0 0 0 0 ffset ffclr
reserved 0x0e
reserved 0x0f
PROFILE_CTLA 0x10 cinv csel2 csell <c¢sel0 dinv dsel2 dsell dselO
PROFILE_CTLB O0Ox11 0 0 0 cval2 cvall cval0 cload cclr
reserved 0x12
reserved 0x13

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

6 FlexDDS Operator's Manual — Rev. r2c_2

SLOT_SCFGO 0x14 0 0 0 0 0 0 oksmpe bpsck
TRIG_CTLA 0x15 0 0 0 0 0 ifppt enfpt entgk

Bit description of 0SK_CTLA, DRCTL_CTLA, DRHOLD_CTLA

The OSK pin controls the DDS output: If LOW, the RF output is off, if HIGH the RF output is switched on.
The DRCTL pin controls the direction (up/down) of a DDS ramp (e.g. frequency ramp) while DRHOLD can
be used to hold the ramp generator if HIGH.

The FPGA engine for these 3 registers follows the same pattern: Two control registers CTLA and CTLB
control how their corresponding pin is used. The following list refers to the CTLA register.

bit(7..6): omux(1..0):
Control the output multiplexer attached directly to the corresponding DDS pin (OSK, DRCTL,
DRHOLD).

11: force output HIGH

10: force output LOW

01: edge triggered output
00: transparent level output

bit(5..4): fmod(1..0)
Operation mode of the flip-flop; only effective if omux(1..0) is set to edge triggered output.
11 (reserved)
10 toggle with each input transition
01 set output HIGH at first intput transition (rising edge triggered)
00 set output LOW at first intput transition (rising edge triggered)

bit(3): iinv
Input invesion bit; if set the input (specified by isel(2..0) is inverted before being passed to the output
or to the flip-flop. By inverting the input, the flip-flop is made falling edge triggered instead of rising
edge triggered.

bit(2..0): isel(2..0)
Input selector.

111 frontpanel comparator input (“Comp. In (10MHz)") [FP_IN_CMP]
110 frontpanel TTL A input (“TTL In A”) [FP_IN_C]
101 frontpanel TTL B / OSK input (“TTL In B (OSK)") [FP_IN_B]
100 frontpanel trigger input (“Ext. Trig") [FP_IN_A]

011 DDS RAM_SWP_OVR pin used as input
010 DDS DROVER pin used as input

001 update trigger input
000 default value (LOW for DRHOLD, HIGH for OSK and DRCTL)

(Names in the right column are internal signal names and meaningless for the end user.)

Bit description of 0SK_CTLB, DRCTL_CTLB, DRHOLD_CTLB

bit(7..2):
reserved; write them as 0

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 7

bit(1): ffset

bit(2): ffclr
If written 1, the flip-flop is set (ffset) or cleared (ffclr), respectively. This can be used to prepare the
internal flip-flop state for edge-triggered operation.
If both ffset and ffclr are set, clear takes precedence.

Examples

For example, if you wish to have the “TTL In B (OSK)" input on the slot frontpanel as OSK pin (to digitally
switch on/off the RF output), use the following register contents:

0SK_CTLA = 00001101 (i = 0 or 1, deciding whether LOW or HIGH is "ON")

This is actually the default setting after power-up.
To use the “TTL In A" input on the slot frontpanel as DDS sweep ramp direction pin, use:

DRCTL_CTLA = 0000i110 (i = 0 or 1, deciding whether LOW or HIGH is "UP")

To force the DRCTL pin LOW and use the “TTL In A” input on the slot frontpanel as DDS sweep ramp hold
pin, use:

10000000
00001110 (i = O or 1, deciding whether LOW or HIGH is "HOLD")

DRCTL_CTLA
DRHOLD_CTLA

You can also use the rising edge of the “TTL In A” to stop a ramp, so that the ramp will not resume even
after the falling edge. (HIGH state on DRHOLD holds the DDS ramp.)

DRHOLD_CTLA
DRHOLD_CTLB

0101i110 (rising edge will bring flip-flop into HIGH state)
00000001 (clear the flip-flop to LOW state)

The inversion (‘i" bit) may become necessary to establish the desired polarity (depending on whether an
inverting opto coupler or comparator is used in the internal signal path of the FlexDDS).

NOTE: For these examples to work, the AD9910 has to be configured correctly, e.g. OSK has to be enabled.
Bit description of BPTRIG_CTLA

This register can be used to control the backplane trigger signal. The backplane trigger signal is a wired-OR
signal on the backplane which allows the slots to generate triggers. Care has to be taken that if two slots
generate a trigger at the same time, only one trigger will be “seen” by the backplane control unit. Also, make
sure that these triggers do not coincide with frontpanel triggers.

bit(7): ffset

bit(6): ffclr
If written 1, the flip-flop is set (ffset) or cleared (ffclr), respectively. This can be used to prepare the
internal flip-flop state for edge-triggered operation. If both ffset and ffclr are set, clear takes precedence.

bit(5): omux(0):
Control the output multiplexer attached directly to the trigger pulse generator.

1. edge triggered output
0: transparent level output

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

8 FlexDDS Operator's Manual — Rev. r2c_2

bit(4): fmod(0)
Operation mode of the flip-flop; only effective if omux(0) is set to edge triggered output.

1: toggle with each input transition
0: set output HIGH at first intput transition (rising edge triggered)

bit(3): iinv
Input invesion bit; if set the input (specified by isel(2..0) is inverted before being passed to the output
or to the flip-flop. By inverting the input, the flip-flop is made falling edge triggered instead of rising
edge triggered.

bit(2..0): isel(2..0)
Input selector. See OSK_CTLA.

Bit description of PROFILE_CTLA

The registers PROFILE_CTLA and PROFILE_CTLB control the FPGA output to the AD9910’s
PROFILE(2,1,0) pins. These pins allow to quickly change the profile (i.e. frequency+phase+amplitude)
between 8 different settings. The handling in the FPGA consists of a loadable up/down Gray counter. By
default, profile 0 is active. Different sources can be selected both for the counter as well as for the up/down
selection.

Note: The counter is a Gray code counter with the following counting sequence: 0,1,3,2,6,7,5,4 (“upward”

counting)
The counter wraps around and re-starts after 8 steps.

bit(7): cinv

bit(6..4): csel(2..0)
Select counter clock input into the 3 bit counter which controls the profile pins. The cinv bit can be
used to invert the input (count on falling edge rather than rising edge). The csel(2..0) selects the
source; the bit values are identical with those used in OSK_CTLA:isel(2..0).

bit(3): dinv

bit(2..0): dsel(2..0)
Select up/down counting action. By default, the counter counts upwards (HIGH), but you can use
sources to change the counting direction. dsel(2..0) selects the up/down source; the bit values are
identical with those used in OSK_CTLA:isel(2..0). The default value (isel=000) is HIGH. dinv inverts
the source, so setting isel=000 and dinv=1 will select downwards counting instead of default upwards.

Bit description of PROFILE_CTLB

bit(7..5):
Reserved; write them as 0

bit(4..2): cval(2..0)
These bits represent the counter value of the 3 bit counter which controls the PROFILE pins. If cload
is set, the value is stored in the counter.

bit(1): cload
Write this to 1 if you wish to store the value cval(2..0) in the 3 bit counter. (See erratal)

bit(0): cclr
If set, the counter is cleared. If both cclr and cload are set, the outcome is undefined. (See erratal)

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 9

Examples

To count profiles up like 3->2-> 6 -> 7 -> ... (Gray sequence) triggered by the positive edge of the “TTL
In A" frontpanel input:

00001110 (load counter with start value 3 (See errata!))
01100000 (configure rising edge UP counting with ‘‘TTL A’’)

PROFILE_CTLB
PROFILE_CTLA

To be able to change the counting direction using the “TTL In B” frontpanel input and to count using the
falling edge of the “TTL In A" frontpanel input:

PROFILE_CTLA = 11100101
(“TTL In B" HIGH/LOW for UP/DOWN counting)
Bit description of SLOT_SCFGO

This is an internal config register for the slot and should not be changed by the host computer. A useful
default is set upon reset.

bit(7..2):
Reserved; write them as 0

bit(1): oksmpe
When set, select SYNC_SMP_ERR (multi channel sync status) for the green "OK" LED on the slots;
when cleared select PLL_LOCK (PLL lock indicator) for the green "OK" LED.

bit(0): bpsck
Disable sync clock to the backplane control board. Usually switched on (0) for the master slot and off
(1) for all other slots.

Bit description of TRIG_CTLA
Trigger configuration register.

bit(7..4):
Reserved; write them as 0

bit(3): enbpt
Enable the backplane trigger. This trigger signal is used by the backplane control unit to update the
DDS after writing DDS registers. If this is disabled, the registers will still be written, but no update
pulse will be delivered to the DDS from the backplane. In order to make the new register values appear
on the DDS output (e.g. to make a frequency change effective), either a local trigger pulse (via the
frontpanel key or input - if enabled) or a PROFILE change has to be performed as a substitute for the
backplane trigger pulse. Enabled (1) by default. Only disable if you know what you are doing.

bit(2): ifppt
Invert frontpanel trigger input. This can be used to change from rising edge triggered to falling edge
triggered. Ineffective unless bit(1) is set. Disabled (0) by default.

bit(1): enfpt
Enable triggering of the slot via the frontpanel trigger input. Disabled (0) by default.

bit(0): entgk
Enable triggering of the slot via the frontpanel trigger key (1). Enabled (1) by default.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

10 FlexDDS Operator's Manual — Rev. r2c_2

Parallel Data CPU (PDCPU, PDCPUv2) Firmware Add-On

Note: This section only applies to those FlexDDS slots which have the PDCPU firmware add-on installed.
There are two version of this add-on: The original version and the second version (v2). The PDCPUv2 has
all features of the original PDCPU plus two extras: Extended delay and access to the serial data bus into the
AD9910 DDS register to change DDS registers. Those parts which only apply to PDCPUv2 are marked with
“v2 only” in the documentation.

The PDCPU add-on is installed in the FPGA of the FlexDDS slots. It installs a RAM of 8192 words and a
processor (“CPU") to execute instructions stored in the RAM. Each instruction is consumes word of the RAM
and is executed at a rate of 1 instruction per clock. The clock rate is currently 31.25 MHz (i.e. 1 GHz/32).
The RAM word size is 18 bits.

Register Name Address Bit7 Bit6é Bitb Bit4 Bit3 Bit2 Bitl BitO

PDRAM_ADRL 0x20 <-- RAM address low byte -=>
PDRAM_ADRH 0x21 <-- RAM address high byte -=>
PDRAM_DATA 0x22 <-- RAM data (sequential write) -=>
PDRAM_CTLA 0x24 0 0 crst txdis txen cpudis cpuen rrst

PDRAM_CTLB 0x25 0 0 0 0 0 reserv reserv reserv

Writes to these registers are carried out like regular slot FPGA register writes (0x86 address, followed by:
0x82 data; see below).

CPU instructions are written to the RAM in the following way:

la Set RAM address LOW byte by writing to PDRAM_ADRL

1b Set RAM address HIGH byte by writing to PDRAM_ADRH
The valid RAM addresses are in range 0..8191 and select the address of the instruction (18 bit word) to
be written.

2a Write the instruction LOW byte (bits 0...7) to PDRAM_DATA
2b Write the instruction MID byte (bits 8...15) to PDRAM_DATA

2c Write the instruction HIGH bits (bits 16...17) to PDRAM_DATA
The last write (2c¢) actually commits the instruction to the RAM. The RAM address pointer set in
1a,1b is now automatically incremented by 1 so that the next word in RAM can be written by resuming
at step 2a.

For example, to go to RAM address 0x0105 and write to instructions, the following data has to be sent over
the USB link.

..110 00100000 <-- Select slot FPGA register address 0x20 (PDRAM_ADRL)
..010 00000001 <-- Write PDRAM_ADRL register (address HIGH byte, 0x01)
..110 00100001 <-- Select slot FPGA register address 0x21 (PDRAM_ADRH)
..010 00000101 <-- Write PDRAM_ADRL register (address LOW byte, 0x05)
.110 00100010 <-- Select slot FPGA register address 0x22 (PDRAM_DATA)
..010 aaaaaaaa <-- Write instruction LOW byte (aaaaaaaa)

..010 bbbbbbbb <-- Write instruction MED byte (bbbbbbbb)

..010 000000cc <-- Write instruction HIGH bits (cc)

e e T e e = =

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 11

The 18 bit instruction "cc bbbbbbbb aaaaaaa" is now stored in RAM
at address 0x0105. Address pointer incremented to 0x0106.
1....010 eeeeeeece <-- Write instruction LOW byte (eeeeeeee)
1....010 ffffffff <-- Write instruction MED byte (ffffffff)
1....010 000000gg <-- Write instruction HIGH bits (gg)
The 18 bit instruction "gg ffffffff eeceeceee" is now stored in RAM
at address 0x0106. Address pointer incremented to 0x0107.

Bit description of PDRAM_CTLA

Control register A. This is the main parallel data CPU control register and allows to enable/disable/reset the
CPU.

Note: Only those bits which are written as 1 will carry out any action. Zero bits do not change anything.
E.g. writing only cpudis will only disable the CPU and not affect the TXENABLE pin.

bit(7..6):
Reserved; write them as 0

bit(5): crst
CPU reset. Writing this bit to 1 will reset the CPU. The bit automatically flips back to 0 after less
than 1 us. Resetting the CPU will set the CPU'’s execution address pointer to 0, abort any wait and
clear the wait register, zero the port A register (port D is not affected).

bit(4): txdis
Writing this bit to 1 will disable the TXENABLE pin to the AD9910. May not be set together with bit
txen.

bit(3): txen
Writing this bit to 1 will enable the TXENABLE pin to the AD9910. May not be set together with bit
txdis.

bit(2): cpudis
Disable the CPU if this bit is written as 1. The CPU should be disabled before modifying the RAM
content or resetting the CPU. May not be set together with bit cpuen.

bit(1): cpuen
Enable the CPU if this bit is written as 1. The CPU should be enabled after the RAM has been
written. As soon as the CPU is enabled, it starts executing instructions from the RAM. May not be set
together with bit cpudis.

bit(0): rrst

When written as 1, reset the RAM filling all RAM contents with zero.

Bit description of PDRAM_CTLB
Control register B. Internal use only; do not access this register.
CPU Instructions

The CPU understands the following instructions:

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

12 FlexDDS Operator's Manual — Rev. r2c_2

Instructions to write to the 18bit parallel data bus into the AD9910 DDS:
00 AAAAAAAA AAAAAAOO Set 14 bit DDS amplitude value A (AD9910: F1,0=00)

01 PPPPPPPP PPPPPPPP Set 16 bit DDS phase value P (AD9910: F1,0=01)
10 FFFFFFFF FFFFFFFF Set 16 bit DDS frequency offset F (AD9910: F1,0=10)
11 AAAAAAAA PPPPPPPP Set 8 bit DDS amplitude A and phase P (F1,0=11)

Instructions interpreted by the PD CPU:
00 Oaaaaaaa aaaaaall JUMP to address aaaa.

00000001 NOP (no operation, consumes 1 cycle delay)
00 rrrrrrrr mmO0O0101 WAIT (m: wait mode, r; wait register)
00 s.001001 UPDATE (s: now or next)

00 vvvvvvvv pp001101 WRITE to PORT p with value v

00 ccccccecec nn010001 CONDition c¢ (nn is reserved and must be 00)

00 dddddddd L.010101 SPI: Transfer data d over SPI into AD9910 (v2 only)
00wwwe ..011001 WAIT_XREG: wait extension registers (v2 only)

Above dots ('.") denote “don’t care bits". All other illegal instructions are ignored like the NOP instruction.
Program termination: If the program counter reaches the end of the RAM it wraps over to address 0. This
means, if the program should stop at some point (e.g. end of the program), it is recommended to use a
WAIT with a condition that never comes true or a JUMP to the same address.

Hint: You can simply store the instruction “JUMP 8191"” at RAM address 8191 which is the end of the RAM.
This prevents the program counter from wrapping over to address 0 and execute the program again. At the
end of the program, simply place a “JUMP 8191" as well. If you do not do so, the CPU will execute all
instructions between program end and RAM end which will usually be all zero (i.e. instruction to set the DDS
amplitude to 0).

Parallel Data Write Instructions

The first 4 instructions listed in the instruction summary above are data write instructions. When executing
one of these instructions, the CPU simply writes the passed data to the AD9910’s 1642 bit parallel data bus.
Basically, the first two bits are the F1 and FO pins of the AD9910 while the remaining 16 bits are the

16 parallel data pins.

Since the DDS amplitude has 14 bit precision only, the DDS amplitude must be written with the two least
significant bits zero! All other instructions understood by the CPU have the same form as the DDS amplitude
write instruction except that the last two bits are not zero. This allows space-efficient instruction storage.

CPU Instruction JUMP

This instruction makes the CPU unconditionally jump to a new RAM address. The next instruction executed
by the CPU will be the one found at the new RAM address. The RAM address in range 0...8191 is encoded
in bits 2 to 14 named ‘a’.

CPU Instruction NOP

This instruction does nothing, simply consumes one clock cycle. This can be used to deliberately insert
delays.

CPU Instruction WAIT

This instruction can wait for a specified amount of time or for some event to happen.
The WAIT instruction has 3 different forms:

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 13

00 rrrrrrrr 00000101 WAIT DELAY SHORT

00 rrrrrrrr 01000101 WAIT DELAY LONG

00 Irrrrrrr 10000101 WAIT FOR EVENT

00 11000101 WAIT SPI (wait for SPI writes to complete; v2 only)

WAIT FOR EVENT waits until an event happens. Here, the 7 ‘r' bits make up a bitmask. Each bit can select
one independent event source:

bit 6 frontpanel comparator input (“Comp. In (10MHz)") [FP_IN_CMP]
bit 5 frontpanel TTL A input (“TTL In A") [FP_IN_C]
bit 4 frontpanel TTL B / OSK input (“TTL In B (OSK)") [FP_IN_B]
bit 3 frontpanel trigger input (“Ext. Trig") [FP_IN_A]

bit 2 DDS RAM_SWP_OVR pin used as input

bit 1 DDS DROVER pin used as input

bit 0 update trigger input
If any one of the selected bits is HIGH, then the wait condition becomes true, otherwise it is false.
Depending on the bit 8 (‘I'), the CPU stops waiting and resumes execution when the condition is true (I1=0)
or when it is false (I=1).
WAIT SPI (v2 only) waits for the SPI FIFO buffer to be entirely written into the AD9910 via the serial SPI
port. See the SPT PDCPUv2 instruction below.
WAIT DELAY SHORT waits for the number of cycles secified with the ‘r' bits (0. ..255) plus an additional
delay of 3 cycles.
PDCPUv2: The additional delay is 4 cycles. If the WAIT_XREG instruction is used before the WAIT, the delay
is further extended. See below table for a summary of delays.
WAIT DELAY LONG waits for the number of cycles secified with the ‘r’ bits multiplied with 256, plus the same
additional delay similar to WAIT DELAY SHORT.
PDCPUv2: The additional delay is 4 cycles. If the WAIT_XREG instruction is used before the WAIT, the delay
is further extended. See below table for a summary of delays.
The following table summarizes wait timings for different WAIT instructions. In the table, N specifies the
value of the delay byte (dddddddd, range 0. ..255) and w specifies the predivider value for the WAIT_XREG
instruction (v2 only; range 0...7) when used at all. One cycle is 32ns.

Instruction(s) Wait time in cycles (32ns) PDCPU version
NOP 1 all

WAIT SHORT(N) N +4 all

WAIT LONG(N) 256 x N +4 all
WAIT_XREG(w) WAIT SHORT(N) 23w+2) x (N 4 2.5) + 2 v2 only

WAIT_XREG(w) WAIT LONG(N) 2(w+2) x (256 x N +2.5)4+2 v2 only

NOTE: The table above does not count the time consumed by executing the WAIT_XREG instruction itself
(add 1 cycle for that).

Any delay below 4 cycles can be reslized by 1 to 3 NOP instructions.

Long delays with high precision can be realized by using several delay instructions, e.g. first a coarse WAIT
LONG with WAIT_XREG followed by a fine-grained WAIT SHORT.

CPU Instruction UPDATE

This instruction sends an UPDATE to the AD9910 DDS chip. If the bit 7 ('s’) is set, then the instruction will
send the update one CPU cycle later (UPDATE_NEXT). This is especially useful to set the signal phase when
“auto-clear phase” is set in the AD9910 (CFR1 bit 13).

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

14 FlexDDS Operator's Manual — Rev. r2c_2

CPU Instruction WRITE

This instruction writes to one of the ports of the CPU and has the following form:

00 vvvvvvvv 00001101 WRITE to PORT A
00 vvvvvvvv 11001101 WRITE to PORT D

The 8 bit value specified as ‘v’ gets written to the port A or D. The ports connect the PDCPU with other
parts of the FPGA and the AD9910 DDS.

The bits of port A have the following meaning. Basically they consist of override bits (0, 2, 4) which
control whether the PDCPU has access to certain pins of the AD9910 (0SK, DRCTL, DRHOLD) and if so, the
level bits (1, 3, 5) control the level of the corresponding pin.

bit(7..6):
Reserved; write them as 0.

bit(5): drhold
If bit(4) is set: Level of the DRHOLD pin to the AD9910. If bit(4) is cleared: No meaning.

bit(4): drhold_ovr
If set, the bit(5) of port A of the PDCPU controls the DRHOLD pin of the AD9910. If cleared
(default), the DRHOLD pin is controlled by the registers DRHOLD_CTLA and DRHOLD_CTLB.

bit(3): drctl
If bit(2) is set: Level of the DRCTL pin to the AD9910. If bit(2) is cleared: No meaning.

bit(2): drctl_ovr
If set, the bit(3) of port A of the PDCPU controls the DRCTL pin of the AD9910. If cleared (default),
the DRCTL pin is controlled by the registers DRCTL_CTLA and DRCTL_CTLB.

bit(1): osk
If bit(0) is set: Level of the OSK pin to the AD9910. If bit(0) is cleared: No meaning.

bit(0): osk_ovr
If set, the bit(1) of port A of the PDCPU controls the OSK pin of the AD9910. If cleared (default),
the OSK pin is controlled by the registers 0SK_CTLA and 0SK_CTLB.

The bits of port D control the 3 profile select signals into the AD9910 which allow to select one of 8 profiles:

bit(7..4):
Reserved; write them as 0.

bit(3..1): profile
Select one of 8 profiles from the AD9910. The bits 3 to 1 correspond to the PROFILE2 to PROFILEO
pins of the AD9910 and allow for very fast change of parameters.

bit(0): enable
This bit must be written as 1 in order for the bits 3...1 to be effective. If this bit is written as 0,
nothing happens.

For port D it is important to understand that both port D and the FPGA registers PROFILE_CTLA and
PROFILE_CTLB share concurrent access to the DDS profile selection. This is unlike port A where the override

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 15

bits select whether the PDCPU port A or the FPGA control register accesses the resources of the AD9910
DDS.

The port D allows to change profiles in any order, not only via a Gray code counter. Although you can make
any value transition at the profile via port D, it is recommended to use transitions where only one bit changes
at a time (like e.g. Gray code/counter).

CPU Instruction COND

This is a conditional instruction.

If the condition is true, skip the next instruction.

The COND instruction allows to construct if/else branching and loops which are exeucted until a certain
externally set condition is true. This can be accomplished by placing JUMP instructions directly after the
COND instruction.

For example to have instructions A,B,C executed when the condition is true and D,E executed when the
instruction is false, do the following:

Adr Instruction

100 COND ... // when condition is true, next instruction is skipped
101 JUMP 106 // when condition is false, jump to 106

102 <A> // enter here only if condition is true

103

104 <C>

105 JUMP 108 // skip the "else" branch

106 <D>

107 <E>

108

The COND instruction has the form:
00 Irrrrrrr 00010001 CONDition

The logic behind the condition is the same as in the case of the WAIT FOR EVENT instruction described
above (see WAIT): The 7 ‘r' bits make up a bitmask to select events and the ‘I bit allows to logically invert
the end result.

CPU Instruction SPI (v2 only)

The SPI instruction gives the PDCPUv2 access to the serial configuration interface into the AD9910. This
allows the PDCPU to change the register contents of the AD9910. One important application is to
implement a series of frequency ramps/sweeps which are completely self-timed by the FlexDDS slot without
the requirement to provide an external trigger for each individual ramp.

The SPI instruction has the following form:
00 dddddddd L.010101 SPI: Transfer data d over SPI into AD9910 (v2 only)

The bit L is reserved and should always be written as 0.

The eight data bits d specify a byte to transfer via the SPI into the AD9910. In order to write a 64 bit register
(like the single tone profile register), 9 SPI instructions are needed: The first instruction specifies the register
address, the next 8 instructions specify the 8x8=64 bits register content. This is just as the AD9910 accepts
the data and much like the register writes carried out over the backplane bus from the computer interface.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

16 FlexDDS Operator's Manual — Rev. r2c_2

NOTE: The SPI instructions have unconditional precedence over SPI writes into the AD9910 DDS carried
out over the backplane bus. The user has to ensure that SPI writes over the backplane and carried out via
the PDCPU do not collide (i.e. a re not performed at the same time). Failure to do so will cause corrupt
register contents.

The SPI instruction only takes one cycle (32ns) to execute and merely enqueues the passed 8 data bits d into
a SPI FIFO buffer. This SPI FIFO buffer can hold up to 32 bytes. As soon as one byte is put into the SPI
FIFO, the FPGA starts to write the content of the SPI FIFO via the serial interface (SPI) into the AD9910 at
a rate of 62.5 MHz (16 ns bit cycle time) which is close to the allowed speed limit for the AD9910.

NOTE: In order to write an AD9910 register via the SPI instruction, the register address and the register
content must be sent using multiple SPI instructions immediately following each other. Do not execute other
instructions in between.

The special instruction WAIT SPI (see WAIT above) allows to make the CPU wait until the FIFO buffer for
the SPI register writes(s) has been completely transferred into the AD9910. The user must use either a WAIT
SPI or a long enough WAIT DELAY to ensure the register contents have been transferred into the AD9910
DDS core before executing an UPDATE.

NOTE: The FIFO buffer for the SPI access can hold up to 32 bytes including register address and data
bytes. This allows to enqueue several register writes. The user must ensure that the buffer does not overflow,
otherwise SPI commands are ignored leading to corrupt or missing register contents.

For example, the 32 byte FIFO can hold 3 register writes to 64 bit registers making up 3 x (8 + 1) = 27 bytes
plus one 32 bit register write adding 5 bytes (total: 32 bytes). Alternatively, it can hold 6 register writes to
32 bit registers. If more registers have to be written, the user must use WAIT SPI or a sufficiently long WAIT
DELAY instructions between register writes.

NOTE: WAIT instructions which are intended to wait for transmission of SPI FIFO buffer data into the
AD9910 must be performed between complete register writes. l.e. the next SPI instruction after a WAIT must
be a register address. This is because an I/O reset is performed for the SPI interface of the AD9910 as soon
as the SPI FIFO is empty.

The recommended way to write AD9910 register contents via the SPI instruction is:

1. Perform one or more complete register writes using SPI instructions followed directly by each other for
a maximum of 32 consecutive instructions.

2. Next, wait for the data to be transferred into the SPI using either a WAIT SPI or a sufficiently long
WAIT DELAY instruction.

3. Optionally continue at 1. to write more register contents.
4. Wait or do other reconfiguration things.
5. Perform an UPDATE into the AD9910 (either externally or by use of the UPDATE instruction).

CPU Instruction WAIT_XREG (v2 only)
The WAIT_XREG instruction has the form:
00wwwe ..011001 Configure extended wait predivider register.

Executing this instruction allows to further extend the wait time for the next WAIT DELAY (short or long)
instruction: Without WAIT_XREG the maximum delay is a WAIT DELAY LONG(255) which waits for

65284 cycles (about 2 ms). With a preceding WAIT_XREG instruction, this delay can be multiplied with a
factor of up to 2'6 to extend the maximum wait time to more than 2 minutes.

The WAIT_XREG instruction sets a clock divider for the next WAIT DELAY instruction to a value specified by
the three w bits if the enable bit e is set to 1. The clock divider divides the cycle clock down by a factor of

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 17

2(2¢%2) 3nd introduces an additional delay of 2(2¢*1) The clock divider is reset automatically (to
wwwe=0000) by the next WAIT instruction. Hence, the WAIT_XREG must be called before each WAIT
instruction which requires extended delay time.

See the table at the WAIT instruction for a summary of timings.
Example: This is one method to wait 33.4 msec:

000011 ..011001 WAIT_XREG with enable=1, w=001, (divider 274)
00 11111111 01000101 WAIT DELAY LONG with delay 255

Any delay up to more than 2 minutes can be created by a sequence of

1. one WAIT_XREG followed by one WAIT DELAY LONG or WAIT DELAY SHORT (Coarse delay)

2. one WAIT DELAY LONG or WAIT DELAY SHORT (fine delay).

Since the WAIT_XREG is automatically reset after the first WAIT DELAY, there is no need to call WAIT_XREG
to disable the divider for the second WAIT DELAY.

Setting up the AD9910 for the PDCPU

For the PDCPU to work correctly, the AD9910 has to be configured properly.

This requires that the following bits are set in the CFR2 register of the AD9910: Apart from enabling the
SYNC clock and the PDCLK (bits 22 and 11) which should always be turned on, activate the PDCLK
inversion (bit 10), instruct the parallel data assembler to remember previous value (bit 6) and
finally enable the parallel data bus (bit 4). All these steps can be done in a single register write.

Enabling and disabling the parallel data bus can be done at any time, even while the parallel data CPU is
running. It merely changes the way the AD9910 interpretes the data present on the parallel data bus (use or
ignore).

Disabling and re-enabling the PDCLK while the PDCPU is running to pause execution is not recommended
although it will generally work.

Recommended steps

The PDCPU operates largely independent of the rest, so you can use the PDCPU while at the same time
modifying other DDS parameters (such as frequency or amplitude) via the regular AD9910 register interface.

Imagine the PDCPU as a “background task” that feeds the programmed values into the parallel data interface
of the AD9910.

Here is the recommended way of programming, starting and stopping the PDCPU:

1. Disable the CPU by writing cpudis= 1 in the PDRAM_CTLA register.

2. Store the instructions (“program” for the CPU) in the RAM as explained above.

3. Reset the CPU by writing crst=1 in the PDRAM_CTLA register.

4. Configure the AD9910 to work with the PDCPU (enable parallel data clock; see previous chapter).
5. Start the CPU by writing cpuen= 1 in the PDRAM_CTLA register.

6. (The CPU now runs.)

7. Disable the CPU by writing cpudis= 1 in the PDRAM_CTLA register.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

18 FlexDDS Operator's Manual — Rev. r2c_2

Setting up FlexDDS

USB connector

FlexDDS has a USB connector on the back.

Do not use USB cables longer than 5 meters (limit of USB high speed specification). If no reliable USB
connection can be established, try a shorter cable.

RS232 connector

Some versions of FlexDDS have a RS232 connector on the back.

Currently, the RS232 is set up for 115.2kbaud, 1 stop bit, no parity. Hardware handshaking (RTS/CTS) must
be enabled, software flow control (Xon/Xoff) must be disabled.

The binary data is the same as for USB. 2 byte words are transferred LSB first.

Be sure to set up the serial port in the host computer to binary so that no CR/LF conversion is performed.
Also, character echoing must be disabled.

NOTE: The RS232 internally uses a buffer size of 512 bytes. Only complete buffers will be processed by the
rack. Hence, in order to have a buffer processed, fill it up to 512 bytes (256 words) using fill words

(0x83 0x00). (This translates into “select no slots for write, do not wait for trigger”.) Alternatively, if this is
the last block to transfer, you might choose 0x03 0x00 (“select no slots for write, wait for trigger”). Filling
with 0x00 0x00 produces writes to the CFR1 register in the slots and should be avoided.

Power supply

FlexDDS has a wide input (100 to 230V) power supply and a power switch on the back. Power consumption
is 50-60W when all channels are active.

Heat sinking

FlexDDS can be run “as is” when sufficient cool air can passively convect through the case. This requires at
least 10cm free space below and above the rack and the air from below should be cold. In space constrained
environments it is recommended to install ventillators to increase air throughput. The power supply inside
the rack delivers 5.8V and has sufficient strength to deliver up to 1A for ventillators.

FlexDDS RF generator slots

No slot hot plugging! Never ever remove or insert slots from the FlexDDS rack while the power is switched
on. Always, switch off the power using the power switch on the back (or by unplugging the power cable)
before replacing any slots.

Note also that the slots are electronically identical but precise timing is not completely identical. Therefore,
it is strongly recommended to not change the order of the slots.

Frontpanel controls on the slots

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 19

TTLin A

TTL in B (OSK)

RF level

Comp. In (10MHz)

Ext Trig
Green LED (top)

Green LED (bottom)
Red LED

Red pushbutton
Black pushbutton

BNC input (opto-coupled) and switch (high/low/BNC input). By default, this has no
meaning (this can be changed; see the register description for 0SK_CTLA, DRCTL_CTLA,
DRHOLD_CTLA, PRUFILE_CTLA).

BNC input (opto-coupled) and switch (high/low/BNC input). By default, this is the
OSK input which can be used to switch on/off the RF output digitally.

Potentiometer, switch and BNC input. If the switch is set to external, the “RF level
analog in” (0-10V BNC input) can be used to set the RF power level. 0V (disconnected)
is maximum level.

Comparator input, not opto-coupled, up to 10MHz. General purpose input with no
meaning by default.

BNC input (opto-coupled). By default, this has no meaning.

Power LED attached to microcontroller. Blinks during bootloading and in case of error.
Should be lit continuously during normal operation.

“OK" led. By default shows if the PLL is locked. Should be lit during normal operation.
Trigger led; flashes shortly for update triggers to the DDS.

Manual trigger button. Mainly useful for testing.

Slot reset. Normally, do not use because after reset, certain configuration values need
to be stored into the slot. This is only performed if the whole slot is reset.

Frontpanel controls on the left (frontpanel rack control)

Tiny slot on the left; top-to-bottom:

Blue LED

Yellow LED

Green LED

Black pushbutton
Red pushbutton
BNC input (trigger)
BNC input (reset)
BNC input (10MHz)
Green LED

SMA output

LEMO connector
Green LED

Microcontroller-attached power LED. Blinks in case of error. Should be lit
continuously during normal operation.

USB activitly LED. LED is switched on whenever the rack reads from the
USB or wait for additional data from the USB. When the LED is constantly
on, more data on the USB needs to be supplied and the trigger is deacti-
vated.

Rack trigger LED. Flashes quickly for every trigger event.

Rack reset pushbutton.

Rack trigger pushbutton.

Trigger BNC input, opto-coupled. Rising edge triggers.

Rack reset BNC input, opto-coupled. A HIGH level resets the rack.
10MHz reference clock input.

LED is on if a (10MHz) reference clock is detected.

Output: Delivers a synchronized trigger edge for every trigger input. Polarity
can be changed via the ICFG register (default: rising edge).

Used for firmware updates.

Power LED.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

20 FlexDDS Operator's Manual — Rev. r2c_2

AD9910 Register Contents: What you must NOT modify!

All registers of the AD9910 DDS chip can be changed by the user. However, some registers and register
values should not be changed:

e CFR1: Can be modified; bits 1 and 0 must always be written as 1 and 0 (SDIO is only input,
MSB first).
Defaults: manual external OSK and OSK are enabled, the inverse sinc filter is enabled and SDIO is
input only.

e CFR2: Can be modified. The SYNC clock must always be enabled on the master slot and
should be enabled on the slave slots (bit 22 written as 1). The PDCLK clock should be
enabled on all slots (bit 11). By default, singletone ASF, the SYNC clock and the PD clock are
enabled and “matched latency” is set.

e CFR3: Do not modify.

e MCS: (multi-chip sync, address 0x0A) Can be modified if the need arises. Ask vendor for instructions
and defaults before you do.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 21

Errata

e E1 Problem: Setting the Gray counter using PROFILE_CTLB does not work reliably with a single write if
more than 1 bit changes during the write.

Workaround: To reliably reset the counter to 0, do not use the cclr bit. Instead, use cload with the
following load sequence:

PROFILE_CTLB = 00001111 -- load 111
PROFILE_CTLB = 00001011 -- load 011
PROFILE_CTLB = 00001001 -- load 001
PROFILE_CTLB = 00001000 -- load 000

Any other value can be loaded in the same fashion: First load the binary complement, and then
successively flip the 3 bits, one by one.

It is recommended to use Gray encoding to switch between different profiles, e.g. binary:
000,001,011,010,110,111,101,100.

Solution: None.

e E6 Problem: A “select slots for write” has to be performed after every “wait for trigger".

Workaround: Insert “select slots for write” (0x00 0x83) after each “wait for trigger” (i.e. each time the
CONTinuation bit is cleared).

Solution: A firmware update which fixes this bug is available.

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

22 FlexDDS Operator's Manual — Rev. r2c_2

Example 1

(FIXME: Not verified for newest version - should work though.)

This is an example how to write into channels 3 and 4 a frequency tuning word for 10MHz, then wait for a
trigger. Upon the first trigger, the channel 3 is updated, after the next trigger, channel 4 is updated. 10MHz
corresponds to a frequency tuning word (FTW) of 42949673, which is in hex notation: 0x28f5c29, split up in
4 bytes: 0x02, 0x8f, 0x5c, 0x29.

In the example, each line corresponds to a 16bit value interpreted by the DDS rack. The hex and binary
columns display the same values in different representations.

Hex Binary
7 0 15 8
DDDDDDDD C. xx (x = A or R)

0x18 0x83 00011000 10000011 <-- Select slots 3 and 4 for writing.
0x0e 0x80 00001110 10000000 <-- Write to DDS in slots: AD9910 reg adr OxOE (STPO)

0x3f 0x80 00111111 10000000 STPO register: MSB: ampl scale fact high byte = 0x3f
Oxff 0x80 11111111 10000000 STPO register: ampl scale fact low byte = Oxff
0x00 0x80 00000000 10000000 STPO register: phase offset word high byte = 0
0x00 0x80 00000000 10000000 STPO register: phase offset word low byte = 0
0x02 0x80 00000010 10000000 STPO register: FTW first byte (MSB) = 0x02

0x8f 0x80 10001111 10000000 STPO register: FTW next byte = 0x8f

0x5¢c 0x80 01011100 10000000 STPO register: FTW next byte = 0xbc

0x29 0x80 00101001 10000000 STPO register: LSB: FIW last byte (LSB) = 0x29

(here, more writes could follow)
0x08 0x05 00001000 00000101 <-- Select channel 3 for trigger, wait for trigger
...now the DDS rack waits for a trigger to arrive...
After the trigger, channel 3 outputs 10MHz.
0x00 0x83 00000000 10000011 <-- according to errata E6
0x10 0x05 00010000 00000101 <-- Select channel 4 for trigger, wait for trigger
...now the DDS rack waits for a trigger to arrive...
After the trigger, channel 4 outputs 10MHz as well.

Just for clarity, the acutal data sent over the USB is simply a character stream with the content from the
above dump, read left-to-right, top-to-bottom: In hex notation, the actual character data buffer sent over
the USB is:

0x18 0x83 0x0e 0x80 0x3f 0x80 ... 0x10 0x05 0x00 0x00 0x00 0x00...

(Use enough 0x00 at the end to fill up to the next buffer boundary: 512 bytes for RS232, 1024 for USB.)

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

FlexDDS Operator's Manual — Rev. r2c_2 23

Example 2

This is similar to example 1, except that only slot 3 is set to 10MHz and that the slot is updated without the
need for an externally generated trigger. Instead, the trigger is generated by sending the appropriate
synthetic trigger command over the USB link.

Hex Binary
7 0 15 8
DDDDDDDD C. xx (x = A or R)

0x08 0x83 00001000 10000011 <-- Select slot 3 for writing.

0x0Oe 0x80 00001110 10000000 <-- Start of DDS STPO write as in example 1.
0x3f 0x80 00111111 10000000

Oxff 0x80 11111111 10000000

0x00 0x80 00000000 10000000

0x00 0x80 00000000 10000000

0x02 0x80 00000010 10000000

0x8f 0x80 10001111 10000000

Ox5c¢c 0x80 01011100 10000000

0x29 0x80 00101001 10000000 <-- End of DDS STPO write as in example 1.
0x08 0x85 00001000 10000101 <-- Select slot 3 for trigger but do not wait.
0x01 0x81 00000001 10000001 <-- Send command "generate trigger".

(© 2009-2011 Dipl.-Phys. Wolfgang Wieser

